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Note 

A Note on the Roundoff Error in the 
Numerov Algorithm* 

Roundoff error is investigated in solutions of the partial wave Schroedinger’s equation 
by Numerov’s method. The uncommon summed form of the algorithm is shown to be 
superior in this regard and is recommended. Various details and analytic solutions are 
discussed. 

Since its origin in solar system astronomy, Numerov’s algorithm [l, 21 for the 
numerical solution of differential equations (DEQ) of the type dzy/~x2 = A(x)y(x) 
has found a permanent home in physics: in optics and the physics of atoms, molecules, 
nuclei, fluids, and solids. Although many have stated [3-51 that it is the “best” method 
for solving such equations, a variety of competing methods exist of both the “shooting” 
(step by step) [6,7,8] and matrix [9] types. While we don’t wish to enter the controversy 
over which method is best, if indeed one is best, we do wish to respond to some 
recent [8] criticism of the Numerov method and to restate some lessons which seem to 
have been forgotten in the ten years since Ref. [3] was published. The latter article 
contains a wide variety of practical information on the solution of the continuum 
Schroedinger equation and is highly recommended. Because scattering data have 
recently become available at high energies and at all angles, the need for highly 
accurate phase shift codes has dramatically increased [lo, 111. Accurate codes are 
also necessary in order to test approximation schemes, such as the eikonal approxi- 
mation [12]. Our comments are relevant to these needs also. 

Sources of numerical error in solving DEQ’s by shooting methods are of three 
basic types: truncation error caused by mapping the DEQ into an “equivalent” 
problem on a finite mesh, roundoff error produced by the finite word size of computers, 
and matching errors caused by whatever scheme is used to extract useful information 
(phase shifts, binding energies, etc.) from the solution y. We are interested here 
primarily in the roundoff errors. In a recent comparison of binding energies calculated 
using a perturbative method on the one hand and the Numerov algorithm on the 
other hand, it was found that the latter method produced large roundoff errors and 
was rather strongly criticised for this. We wish to point out that there exist several 
forms of the Numerov algorithm, one of which is the ordinary form developed by 
Numerov, described in standard texts [ 131 and commonly used. Another is the summed 
form of the algorithm3 which has an identical truncation error, is extremely stable 
against certain types of roundoff error, and effectively gives one the first derivative of y, 
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as well. Although summed forms of DEQ algorithms are of considerable antiquity, 
there has been relatively little discussion of them [3, 141. We are aware of only two 
explicit references [15, 161 to the use of this form of the Numerov algorithm since 
the discussion in Ref. [3]. Indeed, roundoff error itself is usually not extensively 
discussed (see, however, Refs. [13, 14, 17, IS]). 

We wish to make a comparison of the ordinary and summed forms of the algorithm 
for a particularly simple problem where the exact solution is known. We will compute 
partial wave phase shifts in the absence of a potential; the exact result is zero, but 
errors in the numerical calculation will produce a non-zero result. Since one finds 
a posteriori that there are no qualitative differences between results for various 
partial waves, we will present results for the lowest partial wave, 1 = 0, where the 
Numerov difference equations (including roundoff error) have exact solutions, which 
also are instructive. The other partial waves require a more detailed treatment follow- 
ing the methods of Ref. [3] or [19], but do not generate additional insight. The error 
analysis for bound states is virtually identical. 

The ordinary Numerov algorithm consists of a single difference equation defined on 
an equally spaced mesh, x, = nh, where h is the spacing. Defining 5, = (1 - P’A,/ 12)~~ 
and T,, = PA,&1 - h2A,/12) with A, = A(x,), y, L- y(x,) we have 

if we neglect roundoff error. Roundoff error occurs when the right-hand side of 
Eq. (1) is calculated using the appropriate values stored in the computer and the result 
is actually given by RHS * (1 - E,), where RHS is the exact value one would have 
obtained with intinite word size. Rather than carry out a statistical analysis [14,17, 181 
we simply replace the fractional error at the nth step, E, , by E, the average value 
(which will be positive) and solve the difference equation which actually results from 
the computer’s operation 

5 n+1 = ((2 + T*) (72 - Ll)U - cl. (lb) 

For the reduced Schroedinger equation with no potential and I = 0, we find A, = -k2, 
where E = k2/2m is the energy of a particle of mass m. Since T,, is also a constant T, 
Eq. (1 b) can be solved exactly [20] for n >, 1 subject to the usual boundary conditions: 
5, = 0, 5, = constant. With h = 1 - E + (T/2)(1 - l ) we find 

Y, = BP sin(d) = EC1 - xd2h) [sin(kx,) + kx, (g + $&) cos(kx,)], 

/3 = (1 - E)1/2 Z I - r/2 + = cos-‘(h/)3) g kh + (kh)“/480 + c/(2kh), (2b) 

where the second form in Eq. (2a) follows from the approximate forms of Eq. (2b). 
By either matching y, at two adjacent points [3] to the linear combination B(sin(kx,) + 
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tan&) cos(kx,)) or by matching derivatives in the usual way, the phase shift 6, may be 
determined to leading order in terms of R = kx, 

6, s (R - sin R cos R) ( 
(kh)* - 2(;h)2 + 480 1 * 

The expression for 6, displays the characteristic P-dependence of the algorithm’s 
truncation error and the l/h* roundoff error [3.19]. Note that it has a minimum 
at kh = (120~)‘/~ for fixed R. 

The summed form of the algorithm is derived in Ref. [ 14,181. Basically one writes n 
successive elements of the difference equation and adds them. Including roundof 
error, the summed algorithm has the form 

subject to &, = 0, & = const. for n b 1. In addition, l 1 and Ed are the separate 
averaged roundoff errors for Eqs. (4a) and (4b), [, is the same as before, and F(x,) is 
(hY’(xJ + order (h2)). One may evaluate y’(x,) up to (but not including) order (he) 
using the expressions 

hY:, = a i &at + B i F(m) + y i FM , 
m=-2 m--2 W&=-l 

where 

and 

FM = Fn+m 

a = 71720, 
/3 = -291360, 
y = 91/M. 

(5b) 

(5c) 

Thus, although the assertion of Ref. 11 and 21 is correct that the Numerov method 
(in its ordinary form) does not generate the derivative of y, this is not true for the 
summed form and allows calculation of derivatives without differming, a decided 
advantage. For the model problem we solved earlier we may exactly solve for either 
yn or F,, in the same way. Defining E’ = (Q + l 2), A’ = 1 - l ‘/2 + T(1 - Q/2 and 
p = d-I-;; we find 

Y = BP’* sin(nSb) = Nl - R(E’Pkh))(sin(R) + (R(kh)4/480) COS(R)) ((ja) 

A = cos-‘(x/B’) c kh t (khW480 + order(Lh), (6b) 
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r;, = &P(cos<n#,> + a’ sin(n+J) r 5&l - R(~‘/2kh)) 
(kh)” R 

X (cos(R) - [w + -o- + F + q] sin(R)), (64 

where 0~’ was adjusted to generate the correct Fl . Obtaining y’ from Eq. (5) (8,‘) or 
calculating y’ directly from Eq. (6a) (a,), the phase shifts may be calculated with 
d@Yerent results. 

a,= & sin2 R + (kh)*(R - sin R cos R)/480, (74 

6’ _ (El - l 2) s= 2kh 
sin2 R + (kh)d(R - sin R cos R)/480. (7’3 

Note that, unlike the (l/h2)-behavior of 6, ,a, behaves like (I/h). In addition we would 
expect that c2 e l 1 and therefore that 6,’ c 0 for small h. 

We calculated (for R = 20.0) the first ten phase shifts using both the ordinary and 
summed algorithms for a variety of starting constants, & , for each value of kh. For 
the summed algorithm Eq. (5) was used to calculate y’. The starting values affect 
results only by generating different roundoff errors. For a given value of kh, means 
and variances were calculated for each set of starting values. In addition, predictions 
were calculated using Eq. (3) and (7b), respectively. This requires a value for E, which 
depends on the coding. A particularly simple analysis and minimal roundoff is 
possible if one calculates Eq. (la) by first forming (25, - &+J and then adding 
T&, . There is no error produced by the first operation and the second produces a 
single chopping-type roundoff error [3]. For a machine with a floating point mantissa of 
M bits, we assume that the non-significant bits in any operation are randomly distri- 
buted from zero to a maximum value 2- m+l and a mean value Ed = 2-“. The sign&ant 
bits are not randomly distributed (the first must be a one) and we assume they follow 
the l/z-distribution discussed by Hamming [22]. This leads immediately to Ed = c2 = 
E = E0/21n(2) z 0.721 Q. Calculations were performed on a CDC 7600 which has 
m = 47. 

The results are plotted in Figs. 1 and 2. The individual points are calculated using 
the algorithm and the dashed, dashed-dot, and solid lines are the separately calculated 
roundoff, truncation, and total errors, respectively, from Eqs. (3) and (7b). In Fig. 2 
the roundoff in the total was assumed to be zero (Ed = ~a). For comparison the dashed 
line includes roundoff assuming l 1 - c2 = E. From the results it is clear that e1 g c2 . 
The difference between the two figures is very dramatic and illustrates the superiority 
of the summed algorithm. Both calculations take the same time and storage. In many 
applications there will be no advantage at all to using the ordinary algorithm, and 
we therefore strongly suggest that the summed form be used. The predicted errors are 
also in excellent agreement with actual errors and the E we actually find agrees with 
our prediction to considerably better than one percent. 

Our results also indicate that using Eq. (5) to calculate logarithmic derivatives will 
be superior to differencing the y’s. Both roundoff and matching errors will be smaller. 
This applies to both phase shift and bound state calculations; both use the logarithmic 
derivative and both produce similar errors. 
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Numerov Algorithm 
Ordinary Form ( ,L= 0) 

I/k.h 

FIG. 1. Phase shifts for 1 = 0 calculated using the ordinary form of the Numerov algorithm. 
Calculated points are indicated by dots, while predictions for roundoff, truncation, and total errors 
are indicated by dashed, dashed-dot, and solid lines. 

Finally we discuss the results of Ref. [a]. Although they do not state which version 
of the algorithm they used, it is clear that the eigenvalues in Table VI of that work have 
the (l/h2)-roundoff error typical of the ordinary form of the algorithm. While we 
cannot predict that the summed form would produce results as stable as the preferred 
method of Ref. [a], it is abundantly clear that they would be far superior to the 
Numerov results displayed in Ref. [a]. In all fairness this is the comparison which 
should be made when roundoff error is a significant factor. 
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‘“F 
Numerov Algorithm 
Summed Form ( 1= 0) 

I1k.h 

FIG. 2. Same as in Fig. 1 for the summed algorithm. Solid line contains no roundoff error 
the dashed line does, as discussed in the text. 
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